
Semi-supervised Learning in Generative Adversarial
Networks

Ali Honarmand
57526155

Department of Computer Science
University of British Columbia
ali.honarmand@gmail.com

Ainaz Hajimoradlou
98379167

Department of Computer Science
University of British Columbia

ainaz@cs.ubc.ca

Farzad Abdolhosseini
98498165

Department of Computer Science
University of British Columbia

farzadab@cs.ubc.ca

Abstract

In this paper we explore the research at the intersection of generative adversarial
networks (GANs) and semi-supervised learning. Training GANs with the additional
information of class labels can enhance the quality and controllability of the
generated samples. On the other hand, the structural knowledge captured by the
network enables us to improve upon supervised learning. We try to categorize the
research in this area by identifying the different trends. In addition, we briefly
summarize the works and explain our own understanding of their strengths and
weaknesses.

1 Introduction

There has been considerable interest in GANs in recent years. Most of the early research was in
the realm of unsupervised learning. The focus was on generating samples that look like the true
data distribution. Such models were limited in application, but recently different extensions of this
framework have been used to tackle a large set of problems. One class of these methods are concerned
with relaxing the data requirement of supervised learning. Another class focuses on using class label
information in order to better guide the sample generation process and increasing controllability.
Semi-supervised learning is at the heart of both of these problems, since gathering labeled data
compared to unlabeled data is expensive in most applications.

Deep supervised learning methods have had remarkable success in the past few years in both research
and industry. However, their success is highly dependent on the availability of vast amounts of labeled
data. This problem motivates the use of semi-supervised learning in which easily available unlabeled
data is used to guide the supervised learning process. These methods can be trained to work well with
a rather small set of labeled data. In section 3.1 we will consider how the GAN framework can be
integrated with almost any available neural network classifier in order to make use of unlabeled data.

In the original GAN paper, the user has no control over the samples that the model generates. In
section 2.2 we briefly introduce the reader to the conditional GAN (CGAN) paper [20], which
addresses this issue. There have been many works that build on CGANs to increase the controllability
of the generative model. However, all of these models require labeled data to train, which is expensive
to obtain. In section 3.2 we discuss the semi-supervised methods that focus on improving the quality
and controllability of the produced samples.



We then explore some concrete applications of these methods in section 3.3 and present some
theoretical results in section 3.4. Finally, we discuss their strengths and shortcomings in section 4.

2 Preliminaries

2.1 Generative Adversarial Networks

GAN framework introduced in [11] is a deep generative model that tries to approximately follow the
data distribution. It consists of a generator G that can generate samples and a discriminator D that
tries to distinguish between the fake and the true samples. This can be modeled as a minimax game.
Both networks G and D can be multilayer perceptrons, and the objective function can be written as
follows:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))],

where x comes from the data distribution and z is an input noise vector.

2.2 Conditional Generative Adversarial Networks

GANs can be extended to a conditional model [20] if both the generator and the discriminator are
conditioned on some extra information y. In the generator the input noise pz(z) is combined with the
condition variable y to form a joint hidden representation which is then fed into the network. Both x
and y inputs to the discriminator. This will result in the following objective:

min
G

max
D

L(D,G) = Ex,y∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z)|y))].

2.3 Semi-Supervised Learning

Previously, semi-supervised learning has had some success by incorporating knowledge from the
unlabeled data. Convolutional ladder network[24], a previous state-of-the-art method, achieves an
error rate of 0.89% on MNIST using only 100 labeled samples; while the baseline supervised method
that they compare to has an error rate of 6.43%. Ladder networks integrate a denoising autoencoder
[34] into the existing neural network architecture and combine the original supervised learning loss
with the unsupervised denoising loss. One of their advantages is that they can be incorporated into
any neural network architecture, i.e. both feedforward and recurrent networks. Also, [4] argues that
even though the computational cost almost triples by adding the decoder networks, the training time
doesn’t necessarily increase as much, since the training data is better utilized.

3 Review

3.1 Multi-class Discriminator

As in section 2.3, the methods presented here aim to improve the accuracy of the classifier by making
use of the unlabeled data. A standard classifier in a supervised setting tries to classify each data
point x into one of the K possible categories by outputing a K-dimensional vector and applying the
softmax to get the class probabilities pmodel(y|x). This can easily be extended to the semi-supervised
setting by assigning an extra label y = K + 1 to the fake generated samples from G. Now, unlabeled
data can also be used by maximizing pmodel(y 6= K + 1|x). It is shown in [27] that this approach
can also increase the quality of the generated images. A motivation for this idea is a hypothesis which
argues that when humans look at an image they tend to classify the objects that they see; and they
only call it “fake” if it doens’t fit into any of the other known categorizes. The discriminator here is
trying to do something similar.
The loss function for this method can be defined as a combination of the supervised and the unsuper-
vised loss, such as the following used in [27]:
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L = Ex,y∼pdata(x) log pmodel(y|x) + Ex∼G(z) log pmodel(y = K + 1|x)
= Lsupervised + Lunsupervised, where

Lsupervised = Ex,y∼pdata(x) log pmodel(y|x, y 6= K + 1)

Lunsupervised = Ex∼pdata(x) log[1− pmodel(y = K + 1|x)] + Ex∼G(z) log pmodel(y = K + 1|x).

Similar formulations of this idea have been leveraged in [8, 17, 21, 27, 30] to increase the accuracy of
the supervised methods and achieve comparable or even better than state-of-the-art in semi-supervised
learning [18, 24]. SGAN[21] shows that forcing the discriminator and the classifier to share weights
improves data-efficiency but the results are evaluated on a small subset of MNIST. On the other
hand, [30] gives a more thorough evaluation of their proposed categorical GAN for unsupervised and
semi-supervised framework. Their proposed model also acts as a regularizer for the discriminatively
trained classifier. The classification performance is competitive with the state-of-the-art models for
semi-supervised image classification and they are able to generate images with high fidelity. [27]
proposes some practical techniques to improve the training process, such as feature matching and
minibatch discrimination. The results show that feature matching improves the accuracy of the
classifier but doesn’t improve the quality of the generated features. On the other hand, minibatch
discrimination increases the quality of the images but doesn’t help with the classification.

Even though this combined supervised and unsupervised loss has been used in many works in
computer vision and NLP such as [16, 18, 35, 36], this framework naturally does not work well with
textual data. This is largely due to the fact that the generator network is designed to adjust the output
continuously. [9] proposes discriminative adversarial network (DAN) framework to overcome this
issue. Instead of using the generator/discriminator network in GAN, they use two discriminators: a
predictor network and a the judge network. Predictor, denoted by P , produces the prediction y given
the data input x and judge, denoted by J , takes in a pair (x, y) as input and decides whether this is a
fake or real pair. This results in the following objective:

min
P

max
J

L(J, P ) = Ex,y∼pdata(x,y)[log J(x, y)] + Ex∼pdata(x)[log(1− J(x, P (x)))]

The proposed approach in [9] does not consist of a generator for generating samples so, it can
naturally be used in discrete domains as well as continuous. The framework can be seen as a method
to learn loss functions for predictors. Moreover, the unlabeled data can be used transparently as the
predictor does not need to use labeled data. More importantly, there’s no need to manually define
a combined loss function of supervised and unsupervised loss. The judge implicitly learns a loss
function to optimize the predictor. The proposed model is evaluated on two NLP tasks, answer
selection and text classification, and has shown promising results compared to the state-of-the-art
methods.

Denton et al. [8] creates a conditional GAN that is conditioned on an image with a removed patch,
called CC-GAN. They use the output of generator to create a full image that will be fed into the
discriminator. Their goal is to use the discriminator of this conditional GAN in supervised learning
and they claim that training on incomplete images will act as a regularizer for the discriminator. For
a labeled image they use both the supervised and unsupervised loss to calculate the gradient and
update the discriminator variables. For an unlabeled image or an image generated by the generator
only the gradient from unsupervised loss can be used to update the variables of the generator and
the discriminator. They use this same technique to train a normal GAN in this semi-supervised way
(SSL-GAN) and they use it as a baseline. They compare the classification performance of CC-GAN’s
discriminator to the discriminator of SSL-GAN. In the STL-10 dataset CC-GAN has almost 4%
higher accuracy. However, they fail to clearly show the advantage of CC-GAN in other datasets that
that they experimented on.

3.2 Advances in Architecture For Generation of Better Samples

In this section we discuss three papers that aim to use semi-supervised learning to enhance the quality
and controllability of the generated images. Sricharan et al. [32] and Bodla et al. [3] do this by
making changes to the architecture of the model, while Spurr et al. [31] proposes adding two code
vectors to the model which can be used as knobs to control what the model will generate.
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Sricharan et al. [32] proposes an architecture for semi-supervised training of conditional GANs.
The main idea is to split the discriminator into an unsupervised discriminator Du and a supervised
discriminator Ds (Figure 1). Du outputs whether image x is real or fake while Ds outputs whether
(x, y) is real or fake. Ds only receives a representation of the image from Du and never the image
itself. This intuitively has a few advantages. Firstly, it can be trained in a semi-supervised manner.
Gradient from unsupervised loss can be used to update Du and G, and the gradient from supervised
loss can be used to update the whole network. Secondly, because only a representation of the image
is passed to Ds, the model should be less likely to overfit to the few labeled examples that it is
being trained on. This is in contrast to Denton et al. [8] feeding the image directly to the supervised
discriminator. Despite the fact that this architecture makes intuitive sense, it fails to consistently do
better than the semi-supervised CGAN variant that the authors are comparing to. The authors make
claims about the better quality of the images produced by their model compared to the baseline, but
their data does not fully support this. For example, their model produces higher quality images, but
the images do not correspond well to the description they were conditioned on. They also fail to beat
the baseline in the quantitative measure in various tests.

Figure 1: The Semi-supervised GAN architecture proposed by [32].

Bodla et al. [3] aims to improve the controllability of the images produced by the generator. They
build on StackGAN [37] which creates a conditional GAN to produce images conditioned on a text
description. Using their model called FusedGAN, one can fix the posture in the image by using a fixed
noise vector and add styling to the posture using the text description. They achieve this by creating a
novel GAN architecture (Figure 2). The architecture consists of an unsupervised generator G1 and
an unsupervised discriminator Du. G1 is further broken down into two generators Gs and Gu. The
idea is that Gs outputs a representation of the posture (Ms). Ms can either be fed directly into Gu to
generate an unsupervised image, or it can be concatenated with an encoding of the text description
and fed into another GAN network (with its own generator Gc and discriminator Du) to produce a
an image conditioned on the text description. The conditioned image will have the posture captured
in Ms, but it will have the style specified by the text description. FusedGAN is able to produce
higher quality images compared to previous text to image studies. They were able to get higher
inception scores and human scores compared to previous StackGAN-I [37] and GAN-INT-CLS [25]
models. This is probably due to the semi-supervised nature of the approach that allows it to learn
from unlabeled images.

Spurr et al. [31] is also mainly concerned with increasing the controllability of GAN. In addition
to the noise vector z, their model also accepts a css vector and a cus vector as input, which are
dubbed semi-supervised code and unsupervised code, respectively. Their model tries to maximize
the mutual information between css and labeled examples as well as the generated examples. With
some assumptions they prove that this leads to increased mutual information between real and
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Figure 2: The FusedGAN architecture. Blue part of the graph corresponds to unconditional im-
age generation while the orange part corresponds to conditional image generation. The posture
information is captured in Ms and is used by both Gu and Gc. [3]

generated examples. They also try to maximize the mutual information between cus and generated
examples. In this setting css will learn the labeled categories while the cus is free to learn unsupervised
semantics. They show very convincing evidence that their framework works better than the an earlier
InfoGAN [6] framework that their model is based on. They were able to successfully generate images
conditioned on a label by changing the input css. In addition, cus learned interpretable features such
as the angle of a digit in MNIST. They also got very impressive results in terms of the proportion of
labeled samples that they used. The proportion of labeled samples in their datasets varied between
as little as 0.22% to a maximum of 10%. The only dataset where they did not get very good results
on was the CIFAR-10. However, it should be noted that this dataset is very diverse and we have not
come across any other GAN framework that generates high quality images on this dataset.

3.3 Applications

Most methods covered so far are generic approaches and mostly use standard supervised datasets
such as MNIST, CIFAR-10, and SVHN for evaluation. But the most important question is whether
these approaches can be useful in a real-world setting. The authors in [1, 5, 12, 14, 28, 38] apply
semi-supervised learning with GANs in novel problems that we don’t yet have good solutions for.

GONet [14] tackles the traversability estimation problem for a robot. The robot is equipped with
a front-facing sensor, such as a camera, and it should decide whether it can move forward without
colliding with an object, falling down the stairs, etc. Here, instead of using expensive sensors such as
lidar [29], the authors use a cheap fish-eye camera and enhance its functionality with semi-supervised
learning. The problem they face is that gathering positive (traversable) images is really easy and they
even propose a simple approach to collect a huge amount of positive images. However, collecting
negative (non-traversable) images can be costly and potentially dangerous to both the robot and other
people. Hence, they make use of a hybrid autoencoder and DCGAN [23] network in order to learn
the internal structure and similarities in the positive examples. Afterwards, the classifier makes use of
this structural knowledge to better discriminate between the positive and negative samples. Their
method also seems to generalize well beyond the setting in which it was trained on, i.e. it works
when a person carries the camera when walking outside of a building instead of the camera being
mounted on a robot inside a building.

In [28], the authors employ methods similar to what was discussed in section 3.1 for the problem
of semantic segmentation of images. Getting pixel-level labeling of images for segmentation is a
time-consuming and laborious task and the current state-of-the-art requires a lot more data to achieve
high performance. Plus, the authors point out that even the semi-supervised methods in the past
have not been very successful for this task. The proposed method seems to slightly improve on the
previous approaches. Next, they introduce a method which they call Weakly-supervised, that is, they
provide class labels for the unlabeled data but not the pixel-level segmentation. The argument is that
it’s a lot easier to get class labels for images than pixel-level annotation. In order to make use of these
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class labels, they slightly change the architecture along with the objective and use a conditional GAN
instead of a normal GAN. The structure used in both networks can be found in Figure 3.

Figure 3: The network structures used in [28]. The top image corresponds to the network used for the
semi-supervised task. The bottom image corresponds to the network used in the weakly-supervised
task which uses a conditional GAN that gets as input the class labels.

Motivated by this result, [12] applies these techniques to the problem of detecting patches of road in
an images. Similar to the previous work, they first train a semi-supervised model by making use of
unlabeled data. Then, they train another model using weak-supervision by annotating the images
with the shape of the road as a class label. Both of the proposed architectures seem to outperform the
supervised and semi-supervised state-of-the-art, but unlike the previous work, weak-supervision does
not seem to increase the accuracy much more than the simpler semi-supervised method.

Furthermore, [38] applies semi-supervised learning to the problem of cross-modal information
retrieval. The idea is to develop a search algorithm that can retrieve information from one modality,
e.g. image, based on a query from another modality, e.g. text. One of the main ways to solve this
problem has been to use cross-modal hashing. In these methods, different modalities are projected
into a common space using hash functions where similar data is assigned similar values. Then, fast
Hamming distance methods can be used to retrieve similar data from other modalities. However, the
presence of multiple modalities in the data makes them really hard to annotate. Here, the authors
design an elaborate combination of architecture, loss function, and training scheme in order to make
use of the unlabeled data. Even though their method seems to outperform the state-of-the-art, the
process that they use combines the unstable adversarial learning with the erratic policy-gradients
approach. Thus, without further analysis, their method might as well suffer from convergence issues.

Cai et al. [5] investigate whether the samples generated by GANs are able to do spoofing attacks on
speaker recognition systems. They first obtain samples from sampleRNN [19] and waveNet [33],
but these samples fail to trick a CNN-based speaker recognition system. They then propose a mixed
loss for the discriminator which is a modification to the Wasserstein GAN (WGAN) [2] objective
function. This objective encourages the discirminator to classify untargeted labels as fake. The
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samples generated from the trained WGAN are successful in performing both targeted and untargeted
adversarial attacks on current CNN-based speaker recognition systems.

3.4 Theoretical Results

Although semi-supervised learning based on generative adversarial networks has achieved strong
empirical results [3, 18, 30], it is still not clear how the discriminator benefits from joint training with
the generator. Besides, it’s not obvious why a good semi-supervised classifier cannot be obtained
with a good generator simultaneously.

[17] tries to shed some light on the first problem. Using a case by case analysis, the author tries
to demonstrate that the unsupervised loss would only be advantageous to the classifier when the
generator only produces “moderate” fake samples. They argue that the unsupervised loss for “weak”
samples would be approximately zero and thus wouldn’t influence the supervised trainig at all. On the
other hand, if the samples are too strong, we will be in one of the two settings: either the classifier has
a high capacity or it doesn’t. If it does, it can increase the curvature at the midpoint to discriminate
between the fake and true labels, and therefore overfits to the labels. If it’s regularized or it doesn’t
have enough capacity, the classifier can’t discriminate between the fake and true samples. In this case
they argue that the entropy of the distribution might increase and thus hurt the performance.

At the same time, [7] theoretically proves that in the multiclass discriminator formulation (section 3.1)
good semi-supervised classification requires a bad generator. In other words, the generator distribution
should not match the true data distribution. This results in a new definition, the complement generator,
which should generate complement samples in the feature space. Intuitively, this means sampling
from the complement space of the data distribution manifold (please refer to the original paper
for the exact definition). The authors demonstrate that given a complement generator, a properly
optimized discriminator is able to obtain correct decision boundaries in high-density areas in the
feature space. [7] also proposes a new formulation of the generator and discriminator objective to
improve drawbacks of feature matching which is one of the proposed techniques in [27] to improve
training for GANs (section 3.1).

3.5 Beyond Traditional Architectures

Hinton et al. [13] introduced a promising framework called capsule networks which were shown to
be powerful alternatives to CNNs in [26]. Moreover, the authors in [15] integrate these networks with
GANs and call their model CapsuleGAN. Their network shows promising results in semi-supervised
classification, but it still requires more experiments. They show that their model outperforms GANs
in the semi-supervised task, but oddly enough, they don’t compare their result with any of the
methods that we discussed here. In contrast, they compare CapsuleGAN with their own version of
convolutional GAN and show that it performs better. However, the reported error rates are much
worse what was previously reported in [27] and [30].

4 Discussion

In this paper we explored the research at the intersection of GANs and semi-supervised learning.
One approach improves upon supervised learning by incorporating the information from unlabeled
data. These methods generally combine the discriminator and the classifier into one network and
use a combined supervised and unsupervised loss for training. They have had some success over
the previous state-of-the-art in semi-supervised learning. But [22] casts doubt on their real world
applicability. The size of the validation sets used in many SSL methods are much larger than the
realistic size. This is not representative of the real world where small validation sets lead to much
noisier objective values during hyper parameter tuning. In a similar argument, we can confirm that
[10] may not have much real world applicability since they optimize their hyper parametes on a
validation set which is 10 times bigger than the training set. Besides, varying the number of labeled
and unlabeled data heavily affects the performance. Therefore, we think that semi-supervised learning
requires better established benchmarks to avoid confusion about the generalization of the methods
and their real world applicability. This can also solve the latter issue of different levels of sensitivity
between SSL techniques based on the number of labeled and unlabeled data.

7



Another approach focuses on improving the quality and controllability of the generated images by
providing extra information through class labels. These methods generally make modifications to the
original GAN architecture and/or the loss function to allow for semi-supervised training of the model.
In some cases, providing even one extra labeled sample per class can highly improve the model to
generate proper samples. This has even led to increased training speed in [31]. These semi-supervised
GAN models have been able to generate impressive images in simple homogeneous datasets such
as MNIST, CelebA, and SVHN. But the results are still far from perfect in more complex datasets
such as CIFAR-10. Most proposed architectures [3, 31, 32] are based on DCGAN[23] which can be
considered one of the most influential papers in this area. DCGAN substantially improved training,
but their results were again based on homogeneous datasets such as faces and bedroom images.
We believe that conditional GANs will shine when the model is trained on diverse datasets. Thus,
figuring out how to do that will probably be the next step. To be able to create more general models,
researchers might need to look into more flexible architectures. CapsuleGANs [15] might be one
such architecture.
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