
Serpentile Locomotion

Farzad Abdolhosseini
University of British Columbia
Vancouver, BC, Canada
farzadab@cs.ubc.ca

Ainaz Hajimoradlou
University of British Columbia
Vancouver, BC, Canada
ainaz@cs.ubc.ca

ABSTRACT
UPDATED—May 6, 2019. Snakes are capable of moving on both steady surfaces and cluttered terrain
while most models that use legs or wheels to obtain mobility perform poorly on cluttered exteriors. This
project focuses on simulating the snake’s motion by different techniques. First, different structures
that can be used to construct snake’s body are explored. Then, we try to create a decent motion
using sine waves; and finally we use reinforcement learning, specifically policy gradient algorithms,
to achieve controllable movement. The model is supposed to move toward a specified goal that is
determined by a random objective. Different action encodings, including one based on Discrete Fourier
Transforms, are introduced to make the task more feasible.

KEYWORDS
Locomotion; Modeling; Snake; Reinforcement Learning; Policy Gradients, DFT

ACM Reference format:
Farzad Abdolhosseini and Ainaz Hajimoradlou. 2019. Serpentile Locomotion. In Proceedings of ACM Conference,
Washington, DC, USA, July 2017 (Conference’17), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA
2019. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of ACM Conference, July 2017 , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

INTRODUCTION
The problem addressed in this work is to model a snake’s movement. A snake mainly has four types
of motion; Lateral undulation, Concertina locomotion, Rectilinear crawling, and Sidewinding. Lateral
undulation is when various areas of the snake’s body are pushing against a number of fixed points at
the same time. This kind of motion is particularly used in desert or water. Concertina locomotion can
be seen when a snake crawls through a tube which is done by making the back half of the body act
as an anchor. Rectilinear crawling involves waves of bilaterally symmetrical muscle contractions and
is commonly used by large snakes. Sidewinding is similar to concertina locomotion except that in this
case, the angle of movement is 45 degrees.
We have only considered a Lateral undulation which is the most common mode of motion that

snakes use to move through a wide range of environments. Cubes are used to build each part of the
snake’s body, and these parts are then connected through joints. By feeding a sinusoid to the body
parts, a simple working model is constructed. Different results of the simulation are generated by
other shapes like cylinders and also varying the sizes of the cubes.
In order to see if we can achieve a reasonable speed with the current model we run a grid search

and optimize the movement by using a simple sinusoidal motion. As you can see in Figure 10, we
achieve a speed of more than 0.78m/s which is a promising result.
As the final step, we have used policy gradient for learning the movements. In each episode, we

specify a randomly chosen objective and a corresponding reward function. This reward is based on
the velocity and the distance between the center of mass and the goal. Goal has a high reward of
100, and in each step before reaching the goal, we receive a negative reward. We have defined several
controllers (action encodings) for action space. These controllers are responsible for constructing the
desired joint angles. In each observation, we find the position and orientation of the object in the
space. At the start of each episode the environment is reset. The final results are then generated after
40 iterations on several controllers.

Figure 1: Snake locomotion.

TOOLS
We choose Python programming language for our work, because of the vast range of available libraries
and its ease of use. After creating the model, we need a physics-based simulation engine to test its
different aspects. In order to do this, we use PyBullet . To achieve our goal of creating controllable
motion, we use RL-Labwhich is a framework for reinforcement learning containing the implementation
of many state of the art algorithms in this field.

https://pybullet.org
https://github.com/rll/rllab/


Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

Pybullet
PyBullet is the official Python interface to the Bullet Physics SDK which for our purposes provides
physics-based simulation and collision detection as well as rendering and visualization. You can use
this engine either in a GUI, or a DIRECT mode which is useful when training or running computations
on a remote server. One thing to note here is that the DIRECT mode does not make use of the GPU.
PyBullet can also be used for Virtual Reality and a suite of environments that can be used with

OpenAI Gym for reinforcement learning. In addition, there are a set of pre-coded examples of training
using these environments and some pre-trained models that can be enjoyed out of the box (See
Figures 2 and 3).

Figure 2: Ant Bullet environment

Figure 3: Half Cheetah Bullet environ-
ment

Jinja Model Templates. To describe the model, Bullet lets us use different file formats like SDF, URDF,
MJCF, and the native Bullet format. We chose to use the Universal Robot Description File (URDF)
format which is used by the ROS project (Robot Operating System). This format lets us describe
a robot using links plus joints that connect them. Unfortunately, this format is not really flexible
and changing simple parameters like the number of links needs manual intervention. To remove this
manual part, we use a templating language called Jinja2 to create the URDF files from Python, and
then load these into PyBullet. This let’s us create really flexible models using high-level manipulations.

Joints and Motor Control. PyBullet provides three different modes of motor-control with fixed
position, velocity, or torque. The documentations clearly specify that the first two modes (fixed
position and velocity) are implemented as constraints, but this might lead to multiple infeasible
constraints which lead to physically impossible phenomena, such as a flying snake.

To avoid these issues, we use fixed torque control along with simple PD-Controllers. Getting these
controllers to work when you have friction can be hard. The problem here is that if the applied force
is too low, the force of friction will dominate and the joint won’t move, but if it’s too high, you might
experience high velocities and therefore non-converging oscillations. To alleviate this problem, one
can decrease the size of the time-step for the simulation, but the problem here was that by setting
time-step below a certain threshold, the joint would not move at all. Unfortunately, we haven’t been
able to identify the cause of this problem, therefore, we found a time-step that worked and stuck with
it.

RL-Lab

Figure 4: Part of snake PBD configuration
for one body segment.

RL-Lab is a framework for developing and evaluating reinforcement learning algorithms. It includes
a range of state of the art algorithms for continuous control. In addition, it is fully compatible with
OpenAI Gym environments. Unfortunately, there are no official installation scripts or even manuals
except for Anaconda, which still needs manual work for using this library every single time. We have

https://github.com/bulletphysics/bullet3
https://github.com/openai/gym
http://jinja.pocoo.org/
https://github.com/rll/rllab


Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

tried to gather all the necessary requirements in a single requirements . txt file, but it still might prove
to be incomplete.

To use this package, we had to create a Gym environment to be used as a test-bed for running the
learning algorithms. By doing this, we now have a fairly standardized environment that can be used
with already existing codes that use Gym environments. Therefore, it’s also possible to contribute
this model to PyBullet or OpenAI Gym to be used alongside humanoid, ant, and other models.

RELATEDWORKS
There are generally different models to simulate a snake’s body. [Miller, 1988] models the body with
springs. Each part of the snake’s body is modeled with a mass object and springs are used to connect
those parts with each other. By writing the Newtons second law equations and dividing it by the total
mass, the position of each part of the snake is obtained. For collisions, a simple normal and tangent
reflection is used and the final position is updated. As a result, snake is capable of moving forward by
oscillating its spring length as a function of time.

Figure 5: cube with larger width.

Figure 6: cube with larger height.

On the other hand, [Waszak, 2015] uses a Position-Based Dynamics (PBD) model. They use two
different distance constraints instead of springs to simulate the body of the snake: strict distances
and distance range. So each two body segments are connected by 14 constraints as shown in figure 3.
Friction constraint is modeled by making use of the fact that the snake’s friction properties are big
when pushing in the lateral or backward direction and small when moving forward. Some External
forces with sinosudial patterns are then applied to the head of the snake.

OUR MODEL
To make things simple, we use a model consisting of cubic links and each two consecutive links are
connected using a hinge joint that rotates along the z-axis. We actually allow a gap between the links
so that the joint have some room for movement1. The joint limits are set in a way that these two links1In real life, this can be modeled with triangular

shapes that meet in between, but we didn’t see
any reason to do such a thing at this point.

can’t collide, but collision between links that are further apart is still possible and should be handled
by the simulator.

In order to drive the joints in our model, we use a sinusoid which is realized by the PD-Controllers.
Denoting by −Li and Li the lower and higher limits of the i’th joint, we set the goal of our controllers
in time-step t to be the angle:

θi (t) = Li · sin(ω · t + φ · i),

for pre-defined values of ω and φ.
Looking at this formula, one can see that for a fixed time-step t , different joints take the values of

the sinusoid with a fixed difference in the phase. Then, with each time-step, the sinusoid "moves" along



Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

the body. It’s also possible to show that under some assumptions, the body should also approximate
a sinusoid at each time-step2.2The idea is that, the joints angles are actually

the second derivatives of the curve which we
see as the body of the snake. So, if the second
derivatives are sinusoids, then the actual func-
tion is also a sinusoid.

Different Body Parts
We tried experimenting with different body types for the model. We varied sizes of the width, length
and height of the cubes. Having a bigger height resulted in an unstable snake movement and a snake
with larger width didn’t look natural. Larger length resulted in some interesting movements. Moreover,
we experimented with different shapes such as cylinders. The snakes could move faster but they were
sensitive to the sizes of the cylinders. One major problem was that cylinders could rotate easily which
produced some strange behaviors. Figure 5 to 8 show different body types used for simulating snakes.
Our model uses a cube with the same sizes for simulation.

Figure 7: cube with larger length.

Axes of Rotation
We have also experimented with multiple axes of rotation. The sinudoid is applied to both x and z axes.
When having multiple axes, it is very critical to fully constrain the rotations. Otherwise, the model
starts lifting up from the ground. We were able to achieve a stable model only when the rotation
along z-axis was negligible.

Figure 8: cylinder.

Figure 9: Rotation along multiple axes;
green line shows the center of mass and
the red line is the objective goal that the
snake is trying to reach.

Optimization
As we saw earlier, we can actually drive the snake with a sinusoid by using fixed variables for ω and φ.
To get the fastest motion that we can achieve using these variables, we run a grid search to different
combinations of these values. The results can be seen in Figure 10. There was a particular setting
of these values in which the snake moves 4.7 meters in the opposite direction. This amounts to a
speed of 0.78m/s , which is pretty decent. This result can be used as a benchmark for the reinforcement
learning part.

ACTION REPRESENTATION ENCODINGS
Reinforcement learning is a hard task in and of itself, but when we are using learning algorithms,
specifically policy search and policy gradients, the way we represent the observations and actions can
greatly influence the results (like in [Merel et al., 2017]). For this reason, we represent the observations
relative to the objects position. But for the actions, it is not clear which representation works best. So,
we create several encodings, which we call low-level-controllers, some of which are only used as a
reference for comparison and debugging.

Simple. This encoding is just an identity and is mainly used for comparison. Here, we simply have
a single input signal per each joint and simply pass the input action to the designated joint.



Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

Sinusoid. This encoding only has two parameters, ω and φ, that we saw before. This is a really
simple encoding and doesn’t have a lot of variance, but we’ve already that it can actually achieve a
really fast motion, which can be good reference for debugging the whole learning framework. One
thing to note here is that, this controller actually needs the time-step t to work, and we will explore
this idea further down the road.

DFT. We propose a sort of encoding scheme that has some nice properties and feels natural for the
snake motion. The idea is to represent the actions in the frequency domain, and then use Fast Fourier
Transform (FFT) to revert it back. By doing this, the range of motion will not be affected.

Just doing might be enough to make a difference, since changing even a single input, does make
a change in the overall motion in a meaningful way. But, this is not the whole story. The second
property that is useful here is that, we can actually decrease the dimensionality of the action space as
much as we want, without losing much of our control over the possible motions. Even if the input
space is as low as two or three dimensions, it can still be thought of as a sinusoidal controller which
we already know is powerful. This property is really useful when the number of links in our snake
model is high. You can think of it as creating the movement using a linear combination of sinusoids.

Figure 10: Distance traveled by the snake
in meters by using fixed variables for the
sinusoid in 6 seconds.

Phase-dependent Controllers. We have seen in the past that phase plays a critical role in locomotion
tasks (see [Peng et al., 2017] and [Holden et al., 2017]). So, another idea that we wanted to experiment
with is to actually change what an action does for each time-step based on the phase variable.
Obviously, before doing this, we need to include the phase as one of the state variables, otherwise the
states would not be Markovian. We actually included the phase in the state in other cases as well.
Doing this allows us to use the sinusoidal controller that we mentioned earlier. Also, this idea

integrates nicely with the DFT controller. From basic properties of the DFT, we know that if we have a
signal x and its corresponding transformed signal X , in order to shift the original signal by D we use
an exponential as shown in the following equation:

x[n] ↔ X [k]

x[n − D] ↔ e
−j2πkD

N X [k]

Now, even if we use fractional values for the variableD on the right, we still get a nicely interpolated
result for shifting x (see Figure 11). Using this, we can actually create action signals by which even a
fixed action results in a nice motion.

Figure 11: Shifting a signal with fractional
values using DFT.



Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

RESULTS
Reinforcement Learning. We have used PPO, the policy gradient algorithm, for reinforcement

learning. We were able to train the model with batch size of 80000, max path length of 2000 and 0.999
for the discount value.

In each episode, the model is reset and a random objective is created within 5 to 7 meters from the
snake’s head position. Then the distance between the head position and the objective is calculated at
each time step.

The reward of reaching the goal is considered 100. Any other point will be given a negative reward.
The final reward is calculated by following equation:

r = −1 + rvelocity − pdistance (1)

pdistance is the distance penalty of the center of mass from the objective. rvelocity is the velocity
reward and is obtained by the dot product between velocity of the the center of mass and the goal.
Action space is then defined by several controllers as previously explained in Action Presentation

Encodings section. Some captures of the trained models are shown in figures 12 and 13. Red line
shows the objective and green line is the center of mass.

Figure 12: Trained model with DFT con-
troller on 40 iters.

CONCLUSION
We construct a working model of a snake using a series of links and joints. Some experiments are
conducted to obtain the most promising structure. Using the final model, we optimize over a finite set
of movements and are able to achieve decent motion with a speed of 0.78m/s in the opposite direction.

Afterward we move on to create a reusable environment that can make use of existing libraries of
reinforcement learning algorithms. A simple reward mechanism based on both velocity in and distance
to the objective is constructed. After some cleaning up, this environment can be made available for
public use, and can even be integrated into the existing PyBullet project.
To make the task of learning more feasible, different action encodings are implemented that can

create natural movements and have the ability to decrease the dimensionality of the input signal.
Finally, we use policy gradient algorithms to learn to move towards a specific randomized goal

and try to use this as a measure of how successful each action encoding really is. Given the limited
amount of time that we had, the results for this part are not yet conclusive, but we plan to spend
more time on this in the future.

FUTUREWORKS
We are going to make the model more robust for future work as the parameters for PD controller
and the time step are sensitive to initialization and some actions may result in strange behaviors. In



Serpentile Locomotion Conference’17, July 2017, Washington, DC, USA

addition, we have only considered one type of motion for the movement. We are going to train the
model on different styles of motion such as sliding.
Besides, we have some major problems with the trained models. They are not efficient and the

movement is very slow. One reason may be the fact that we were not able to train the model on many
iterations. So, working on reinforcement learning will be one of our important objectives.

Figure 13: Trained model with rotating
DFT controller on 100 iters.

We are planning to test the model on different terrain such as ramps or sand. Moreover, one of our
future goal is making use of the environment; building a model of the snake that is capable of moving
by pushing itself to the objects.

REFERENCES
Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned Neural Networks for Character Control. ACM Trans.

Graph. 36, 4, Article 42 (July 2017), 13 pages. https://doi.org/10.1145/3072959.3073663
Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and Nicolas Heess. 2017.

Learning human behaviors from motion capture by adversarial imitation. CoRR abs/1707.02201 (2017). arXiv:1707.02201
http://arxiv.org/abs/1707.02201

Gavin S. P. Miller. 1988. The Motion Dynamics of Snakes and Worms. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 169–173.
https://doi.org/10.1145/378456.378508

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. DeepLoco: Dynamic Locomotion Skills Using
Hierarchical Deep Reinforcement Learning. ACM Transactions on Graphics (Proc. SIGGRAPH 2017) 36, 4 (2017).

Bartlomiej Waszak. 2015. Snake Locomotion Using Position-based Dynamics. In Proceedings of the 19th Symposium on Interactive
3D Graphics and Games (i3D ’15). ACM, New York, NY, USA, 136–136. https://doi.org/10.1145/2699276.2721401

https://doi.org/10.1145/3072959.3073663
http://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1707.02201
https://doi.org/10.1145/378456.378508
https://doi.org/10.1145/2699276.2721401

	Abstract
	Introduction
	Tools
	Pybullet
	RL-Lab

	Related Works
	Our Model
	Different Body Parts
	Axes of Rotation
	Optimization

	Action Representation Encodings
	Results
	Conclusion
	Future Works
	References

